Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression.

Identifieur interne : 001772 ( Main/Exploration ); précédent : 001771; suivant : 001773

Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression.

Auteurs : Kimberly C. Lindstrom [États-Unis] ; Jay C. Vary ; Mark R. Parthun ; Jeffrey Delrow ; Toshio Tsukiyama

Source :

RBID : pubmed:16880522

Descripteurs français

English descriptors

Abstract

The packaging of DNA into chromatin allows eukaryotic cells to organize and compact their genomes but also creates an environment that is generally repressive to nuclear processes that depend upon DNA accessibility. There are several classes of enzymes that modulate the primary structure of chromatin to regulate various DNA-dependent processes. The biochemical activities of the yeast Isw1 ATP-dependent chromatin-remodeling enzyme have been well characterized in vitro, but little is known about how these activities are utilized in vivo. In this work, we sought to discern genetic backgrounds that require Isw1 activity for normal growth. We identified a three-way genetic interaction among Isw1, the NuA4 histone acetyltransferase complex, and the Swr1 histone replacement complex. Transcription microarray analysis revealed parallel functions for these three chromatin-modifying factors in the regulation of TATA-containing genes, including the repression of a large number of stress-induced genes under normal growth conditions. In contrast to a recruitment-based model, we find that the NuA4 and Swr1 complexes act throughout the genome while only a specific subset of the genome shows alterations in transcription.

DOI: 10.1128/MCB.00642-06
PubMed: 16880522
PubMed Central: PMC1592817


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression.</title>
<author>
<name sortKey="Lindstrom, Kimberly C" sort="Lindstrom, Kimberly C" uniqKey="Lindstrom K" first="Kimberly C" last="Lindstrom">Kimberly C. Lindstrom</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vary, Jay C" sort="Vary, Jay C" uniqKey="Vary J" first="Jay C" last="Vary">Jay C. Vary</name>
</author>
<author>
<name sortKey="Parthun, Mark R" sort="Parthun, Mark R" uniqKey="Parthun M" first="Mark R" last="Parthun">Mark R. Parthun</name>
</author>
<author>
<name sortKey="Delrow, Jeffrey" sort="Delrow, Jeffrey" uniqKey="Delrow J" first="Jeffrey" last="Delrow">Jeffrey Delrow</name>
</author>
<author>
<name sortKey="Tsukiyama, Toshio" sort="Tsukiyama, Toshio" uniqKey="Tsukiyama T" first="Toshio" last="Tsukiyama">Toshio Tsukiyama</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16880522</idno>
<idno type="pmid">16880522</idno>
<idno type="doi">10.1128/MCB.00642-06</idno>
<idno type="pmc">PMC1592817</idno>
<idno type="wicri:Area/Main/Corpus">001776</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001776</idno>
<idno type="wicri:Area/Main/Curation">001776</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001776</idno>
<idno type="wicri:Area/Main/Exploration">001776</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression.</title>
<author>
<name sortKey="Lindstrom, Kimberly C" sort="Lindstrom, Kimberly C" uniqKey="Lindstrom K" first="Kimberly C" last="Lindstrom">Kimberly C. Lindstrom</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vary, Jay C" sort="Vary, Jay C" uniqKey="Vary J" first="Jay C" last="Vary">Jay C. Vary</name>
</author>
<author>
<name sortKey="Parthun, Mark R" sort="Parthun, Mark R" uniqKey="Parthun M" first="Mark R" last="Parthun">Mark R. Parthun</name>
</author>
<author>
<name sortKey="Delrow, Jeffrey" sort="Delrow, Jeffrey" uniqKey="Delrow J" first="Jeffrey" last="Delrow">Jeffrey Delrow</name>
</author>
<author>
<name sortKey="Tsukiyama, Toshio" sort="Tsukiyama, Toshio" uniqKey="Tsukiyama T" first="Toshio" last="Tsukiyama">Toshio Tsukiyama</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (MeSH)</term>
<term>Acetyltransferases (deficiency)</term>
<term>Acetyltransferases (metabolism)</term>
<term>Adenosine Triphosphatases (deficiency)</term>
<term>Adenosine Triphosphatases (metabolism)</term>
<term>Chromatin Assembly and Disassembly (genetics)</term>
<term>DNA-Binding Proteins (deficiency)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Down-Regulation (drug effects)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Genome, Fungal (genetics)</term>
<term>Histone Acetyltransferases (MeSH)</term>
<term>Histones (metabolism)</term>
<term>Lysine (metabolism)</term>
<term>Microbial Sensitivity Tests (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Protein Transport (MeSH)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acetyltransferases (déficit)</term>
<term>Acetyltransferases (métabolisme)</term>
<term>Acétylation (MeSH)</term>
<term>Adenosine triphosphatases (déficit)</term>
<term>Adenosine triphosphatases (métabolisme)</term>
<term>Assemblage et désassemblage de la chromatine (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Génome fongique (génétique)</term>
<term>Histone (métabolisme)</term>
<term>Histone acetyltransferases (MeSH)</term>
<term>Lysine (métabolisme)</term>
<term>Mutation (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison à l'ADN (déficit)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Régulation négative (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Tests de sensibilité microbienne (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Acetyltransferases</term>
<term>Adenosine Triphosphatases</term>
<term>DNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetyltransferases</term>
<term>Adenosine Triphosphatases</term>
<term>DNA-Binding Proteins</term>
<term>Histones</term>
<term>Lysine</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Down-Regulation</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Adenosine triphosphatases</term>
<term>Protéines de liaison à l'ADN</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Régulation négative</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromatin Assembly and Disassembly</term>
<term>Genome, Fungal</term>
<term>Mutation</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Assemblage et désassemblage de la chromatine</term>
<term>Génome fongique</term>
<term>Mutation</term>
<term>Régions promotrices (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Adenosine triphosphatases</term>
<term>Facteurs de transcription</term>
<term>Histone</term>
<term>Lysine</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>Histone Acetyltransferases</term>
<term>Microbial Sensitivity Tests</term>
<term>Protein Transport</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétylation</term>
<term>Histone acetyltransferases</term>
<term>Tests de sensibilité microbienne</term>
<term>Transcription génétique</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The packaging of DNA into chromatin allows eukaryotic cells to organize and compact their genomes but also creates an environment that is generally repressive to nuclear processes that depend upon DNA accessibility. There are several classes of enzymes that modulate the primary structure of chromatin to regulate various DNA-dependent processes. The biochemical activities of the yeast Isw1 ATP-dependent chromatin-remodeling enzyme have been well characterized in vitro, but little is known about how these activities are utilized in vivo. In this work, we sought to discern genetic backgrounds that require Isw1 activity for normal growth. We identified a three-way genetic interaction among Isw1, the NuA4 histone acetyltransferase complex, and the Swr1 histone replacement complex. Transcription microarray analysis revealed parallel functions for these three chromatin-modifying factors in the regulation of TATA-containing genes, including the repression of a large number of stress-induced genes under normal growth conditions. In contrast to a recruitment-based model, we find that the NuA4 and Swr1 complexes act throughout the genome while only a specific subset of the genome shows alterations in transcription.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16880522</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>09</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>26</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2006</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression.</ArticleTitle>
<Pagination>
<MedlinePgn>6117-29</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The packaging of DNA into chromatin allows eukaryotic cells to organize and compact their genomes but also creates an environment that is generally repressive to nuclear processes that depend upon DNA accessibility. There are several classes of enzymes that modulate the primary structure of chromatin to regulate various DNA-dependent processes. The biochemical activities of the yeast Isw1 ATP-dependent chromatin-remodeling enzyme have been well characterized in vitro, but little is known about how these activities are utilized in vivo. In this work, we sought to discern genetic backgrounds that require Isw1 activity for normal growth. We identified a three-way genetic interaction among Isw1, the NuA4 histone acetyltransferase complex, and the Swr1 histone replacement complex. Transcription microarray analysis revealed parallel functions for these three chromatin-modifying factors in the regulation of TATA-containing genes, including the repression of a large number of stress-induced genes under normal growth conditions. In contrast to a recruitment-based model, we find that the NuA4 and Swr1 complexes act throughout the genome while only a specific subset of the genome shows alterations in transcription.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lindstrom</LastName>
<ForeName>Kimberly C</ForeName>
<Initials>KC</Initials>
<AffiliationInfo>
<Affiliation>Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vary</LastName>
<ForeName>Jay C</ForeName>
<Initials>JC</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Parthun</LastName>
<ForeName>Mark R</ForeName>
<Initials>MR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Delrow</LastName>
<ForeName>Jeffrey</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsukiyama</LastName>
<ForeName>Toshio</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM058465</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM062970</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM58465</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM62970</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006657">Histones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C081935">MSN2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="D000123">Acetyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.48</RegistryNumber>
<NameOfSubstance UI="D051548">Histone Acetyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.48</RegistryNumber>
<NameOfSubstance UI="C504740">NuA4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000251">Adenosine Triphosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C470546">ISW1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.3</RegistryNumber>
<NameOfSubstance UI="C481261">Swr1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000123" MajorTopicYN="N">Acetyltransferases</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000251" MajorTopicYN="N">Adenosine Triphosphatases</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042002" MajorTopicYN="N">Chromatin Assembly and Disassembly</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="Y">Down-Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051548" MajorTopicYN="N">Histone Acetyltransferases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006657" MajorTopicYN="N">Histones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008826" MajorTopicYN="N">Microbial Sensitivity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16880522</ArticleId>
<ArticleId IdType="pii">26/16/6117</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.00642-06</ArticleId>
<ArticleId IdType="pmc">PMC1592817</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2000 Jun;5(6):927-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10911987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 3;406(6795):541-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10952318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Oct;20(19):7051-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Dec;6(6):1297-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11163204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 2;276(5):3484-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11036083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Jun;17(6):509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1074-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Aug 10;106(3):297-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11509179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Oct;21(19):6450-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11533234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Feb 22;108(4):475-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11909519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2002 Jun;3(6):422-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Aug;10(2):227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12191469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Sep 26;419(6905):411-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12353039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Dec;22(23):8215-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(1):80-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12482963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Mar 7;112(5):725-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12628191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Apr;4(4):276-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2003 Apr;13(2):154-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12672492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Jun 1;17(11):1415-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12782659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Jun;19(6):321-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12801725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Sep;23(17):6086-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2002 Nov 13;3:35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12431279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Nov 14;115(4):425-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14622597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Nov;50(4):1155-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14622406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Nov;12(5):1333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14636590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Dec;12(6):1565-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Jan;24(2):757-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jan 16;303(5656):343-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Feb 27;13(4):573-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14992726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Mar 5;116(5):699-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15006352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2004 Apr;6(4):563-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15068795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 May;2(5):E131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15045029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2004 Jun;271(12):2335-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15182349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Nov;24(21):9424-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15485911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Dec;123(4):725-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2693208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 Jul 25;23(14):2715-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7651832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jul 1;24(13):2519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8692690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Feb 15;12(4):586-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9472026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Sep;2(3):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Mar 15;13(6):686-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10090725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Oct;15(14):1541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Dev Biol. 2005;65:115-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Feb 1;19(3):295-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 25;280(12):11987-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 8;280(14):13665-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15795371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jun 10;18(6):723-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15949446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Aug 26;122(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16122420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Oct;3(10):e328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16122352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2005;21:133-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Oct 21;123(2):219-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Oct 21;123(2):233-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18385-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16344463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Mar 15;20(6):660-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Mar 15;20(6):700-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Mar 15;20(6):711-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):R546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Jul 7;23(13):2597-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15175650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Oct 27;103(3):411-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11081628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Oct 27;103(3):423-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11081629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Aug;3(4):976-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15302830</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Delrow, Jeffrey" sort="Delrow, Jeffrey" uniqKey="Delrow J" first="Jeffrey" last="Delrow">Jeffrey Delrow</name>
<name sortKey="Parthun, Mark R" sort="Parthun, Mark R" uniqKey="Parthun M" first="Mark R" last="Parthun">Mark R. Parthun</name>
<name sortKey="Tsukiyama, Toshio" sort="Tsukiyama, Toshio" uniqKey="Tsukiyama T" first="Toshio" last="Tsukiyama">Toshio Tsukiyama</name>
<name sortKey="Vary, Jay C" sort="Vary, Jay C" uniqKey="Vary J" first="Jay C" last="Vary">Jay C. Vary</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Lindstrom, Kimberly C" sort="Lindstrom, Kimberly C" uniqKey="Lindstrom K" first="Kimberly C" last="Lindstrom">Kimberly C. Lindstrom</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001772 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001772 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16880522
   |texte=   Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16880522" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020